

Confidential

DGLD Token Smart Contracts V2 Mainnet​

Security Audit V2
Confidential

November 2025

info@jitadigital.com ​ Jita Ltd

mailto:info@jitadigital.com

 Executive Summary
This blockchain security audit covers DGLD repository
https://github.com/goldtokensa/gtsa-contracts , November 2025.

Code revision under audit: a470014db4fd582182baab0769561f3d10489dd7
Updated code revision: 38ec170e2242ef10c40584e8195acb5ac0578d5b

Issues Found
● 0 critical issue ;
● 0 high severity issue ;
● 1 low severity issue ;
● 3 comments.

Key Audit Results
● 1 low severity issue resolved,
● 1 comments resolved

Issues Severity Found Resolved Remaining

Critical 0 0 0

High 0 0 0

Low 1 1 0

Comments 3 1 2

DGLD Token on Ethereum Address

Proxy address 0xA9299C296d7830A99414d1E5546F5171fA01E9c8

Logic V1 address 0x9a42e29369628a9D979D1A4867D7A2ce9361A6D2

Logic V2 address 0xA9299C296d7830A99414d1E5546F5171fA01E9c8

​

Audit result: Passed

info@jitadigital.com ​ Jita Ltd

https://github.com/goldtokensa/gtsa-base-smart-contracts
mailto:info@jitadigital.com

1 Methodology... 4

1.1 Audit Result... 4
1.2 Issues Severity Evaluation...4

2 Scope of Work...6
2.1 DGLD Mainnet Token V2... 6

2.1.1 Github repositories..6
2.2 Assumptions and limitations.. 6

2.2.1 Time and version reliance...6
2.3 Disclaimer.. 6
2.4 Copyright... 6

3 Audit Findings...8
3.1 /src... 8

3.1.1 Comment: pause and unpause could be external.. 8
3.1.2 Low: pause and unpause could be virtual...8
3.1.3 Comment: disable optimizer when compiling V1.. 9
3.1.4 Comment: DGLDTokenV1 on-chain bytecode verification fails.............................. 10

info@jitadigital.com ​ Jita Ltd

mailto:info@jitadigital.com

1 Methodology

1.1 Audit Result
Jita’s current methodology does not score audits, as such scores can be subjective, easy to

manipulate, create a false sense of security and mislead people into comparing audits and

security scores.

Instead, the final audit is only assigned a value PASS or FAIL.

Audit Result

PASS The issues found by the auditor(s) have all been resolved or

explained by the development team.

FAIL Some of the issues found by the auditor(s) have not all been

resolved or explained by the development team.

1.2 Issues Severity Evaluation
The following section presents the audit findings.

Each issue is located as precisely as possible in the codebase, a description gives more

information on the problem, and one or more recommendations are provided.

The client answer to each issue is included.

Each issue risk severity is estimated following the OWASP risk rating methodology and is

assigned an overall risk severity which can take one of four values:

info@jitadigital.com ​ Jita Ltd

mailto:info@jitadigital.com

Issue Overall Risk Severity

Critical The issue compromises the project and must be fixed.

High The issue is either very likely with low impact, or unlikely but
with a big impact on the business. The issue must be fixed.

Low The issue does not compromise the project, or it has a
potentially minor impact on the system operation.

Comment The issue does not compromise the project.

The issue overall risk severity is evaluated based on two metrics:

1) the likelihood of the issue being exploited (technical feasibility of exploit) and

2) the technical/business/financial impact of the issue.

An issue's overall risk severity is an estimate and may be revised higher or lower by the client

company based on their own estimates of business impact.

info@jitadigital.com ​ Jita Ltd

mailto:info@jitadigital.com

2 Scope of Work

2.1 DGLD Mainnet Token V2

2.1.1 Github repositories
●​ git@github.com:goldtokensa/gtsa-smart-contracts.git​

Mainnet token for DGLD - V2​

Git revision a470014db4fd582182baab0769561f3d10489dd7

2.2 Assumptions and limitations

2.2.1 Time and version reliance
The security audits are conducted within a specified time frame and are reliant on the specific

version of the target code, system and information provided by the client, its affiliates, or its

partners. Therefore, the list of identified vulnerabilities and security issues identified during the

audit should not be considered comprehensive and exhaustive. The audit results do not imply

any guarantee that all potential vulnerabilities, flaws, or defects have been detected.

2.3 Disclaimer
Jita does not warrant that the Deliverables will identify all vulnerabilities.The Deliverables shall

not be considered as a final and sufficient assessment regarding the utility and safety of the

code, bug-free status, or any other contract statements.

Jita disclaims all other warranties express, implied, statutory, or otherwise, including, without

limitation, the implied warranties of merchantability, non-infringement, and fitness for a

particular purpose.

This audit is not financial advice.

2.4 Copyright
© 2025 by Jita Ltd (Jita Digital).

All rights reserved. Jita Digital hereby asserts its right to be identified as the creator of this

report in the United Kingdom.

This report is licensed to the Customer under the terms of the written agreement between Jita

Digital and the Customer.

This audit, or its part, may be published at the Customer's request. Material within this report

may not be reproduced or distributed in part or in whole without the express written permission

of Jita Digital.

info@jitadigital.com ​ Jita Ltd

mailto:info@jitadigital.com

This report accessed through any source other than those controlled by Jita Digital or the

Customer should not be considered authentic.

​

info@jitadigital.com ​ Jita Ltd

mailto:info@jitadigital.com

3 Audit Findings

3.1 /src

3.1.1 Comment: pause and unpause could be external

3.1.1.1 Severity
Comment

3.1.1.2 Files
src/DGLDTokenV2.sol

3.1.1.3 Functions
function pause()
function unpause()

3.1.1.4 Description
The functions pause and unpause are meant to be called directly by an administrator key with
PAUSER_ROLE privileges.
Thus the function type could be external rather than public.
This prevents internal smart contracts functions from calling the function, for instance in a future
update.

3.1.1.5 Recommendation
Consider using keyword external instead of public:​
 function pause() external onlyRole(PAUSER_ROLE) {

3.1.1.6 Customer​
Implemented in 8b9a128b04dc2ceb510a8936b7534b65d67b0f81

3.1.2 Low: pause and unpause could be virtual

3.1.2.1 Severity
Low

3.1.2.2 Files
src/DGLDTokenV2.sol

3.1.2.3 Functions
function pause() public onlyRole(PAUSER_ROLE) {

info@jitadigital.com ​ Jita Ltd

mailto:info@jitadigital.com

function unpause() public onlyRole(PAUSER_ROLE) {

3.1.2.4 Description
The functions pause and unpause are not marked virtual.
This prevents them from being overridden in a future upgrade if needed.

3.1.2.5 Recommendation
Consider adding the keyword virtual to the functions declaration so that a hypothetical V3 of the
smart contracts could redefine these functions if needed:
 function pause() external virtual onlyRole(PAUSER_ROLE) {

3.1.2.6 Customer
Implemented in 8b9a128b04dc2ceb510a8936b7534b65d67b0f81
Also applied to Blacklistable.sol in 3e42843d02240be6e33af58cf8d02564205df7c2

3.1.3 Comment: disable optimizer when compiling V1

3.1.3.1 Severity
Comment

3.1.3.2 Files
foundry.toml​
truffle-config.js

3.1.3.3 Functions
N.A.

3.1.3.4 Description
The first version of DGLDToken.sol was compiled with Truffle.
When reviewing the configuration we find:
 optimizer { enabled: false, runs: 200}
With the new version, the toolchain has been updated to foundry.
In its configuration file, we find
optimizer = true​
Thus, we are working with a slightly different compiler configuration that could lead to using a
different bytecode version of V1 in testing operations (locally, on sepolia and on mainnet) than
the one that has been deployed on-chain and that will be used for actual smart contracts
upgrade.​

info@jitadigital.com ​ Jita Ltd

mailto:info@jitadigital.com

3.1.3.5 Recommendation
Consider using different compilation profiles to compile the old and the new smart contracts.

It might also be easier to place the old and new source files in separate directories.

This is a comment and will not impact the security of the system.

For instance:​
foundry.toml​

[profile.v1]

src= “contracts/v1”

optimizer = false

optimizer_runs = 200

[profile.v2]​

src=”contracts/v2”

optimizer = true

optimizer_runs = 200

#compilation

forge build –profile v1​

forge build –profile v2

3.1.3.6 Customer​
Comment not implemented as it does not impact the system security.

3.1.4 Comment: DGLDTokenV1 on-chain bytecode verification fails

3.1.4.1 Severity
Comment

3.1.4.2 Files

DGLDToken.sol

3.1.4.3 Functions
N.A.

info@jitadigital.com ​ Jita Ltd

mailto:info@jitadigital.com

3.1.4.4 Description
Bytecode verification fails between DGLDTokenV1 on-chain version and locally compiled
version with new toolchain.
Version 1 of DGLDToken used Truffle V5 for compilation and deployment.
Version 2 uses Foundry / Forge, a more modern toolchain.
Some compilation options differ (see previous issue). Even after updating it, the bytecode
verification fails. It seems that Version 1 as compiled with Foundry differs from Version 1 as
deployed on mainnet. All test scripts use the Foundry compiled version of the smart contract.
However, we did run the storage differences script with and without optimisation and found no
memory layout differences.
It is unlikely that the bytecode version deployed on-chain differs significantly from the bytecode
version used for testing.

Verification details:

1) Attempting bytecode verification fails (Proxy address):​
forge verify-contract --skip-is-verified-check --guess-constructor-args
--watch --chain 1 0xA9299C296d7830A99414d1E5546F5171fA01E9c8 DGLDToken
Start verifying contract `0xA9299C296d7830A99414d1E5546F5171fA01E9c8` deployed
on mainnet
Error: Local bytecode doesn't match on-chain bytecode

2) Attempting bytecode verification fails (logic implementation):
Verification of DGLDToken implementation logic fails
forge verify-contract --skip-is-verified-check --guess-constructor-args
--watch --chain 1 0x9a42e29369628a9D979D1A4867D7A2ce9361A6D2 DGLDToken
Start verifying contract `0x9a42e29369628a9D979D1A4867D7A2ce9361A6D2` deployed
on mainnet
Error: Local bytecode doesn't match on-chain bytecode

3.1.4.5 Recommendation
If possible, identify the reason why bytecode verification fails between the foundry generated
bytecode for DGLDToken V1 and the on-chain version compiled with Truffle.
This does not impact system security as (1) the etherscan verification passed and the code
matches the github codebase history and (2) upon inspection, the memory layout remains the
same.

3.1.4.6 Customer
As the test suite forks Ethereum mainnet, we can verify that the upgrade works as planned even
without being able to re-verify the V1 bytecode.

info@jitadigital.com ​ Jita Ltd

mailto:info@jitadigital.com

	
	1 Methodology
	1.1 Audit Result
	
	1.2 Issues Severity Evaluation
	

	2 Scope of Work
	2.1 DGLD Mainnet Token V2
	2.1.1 Github repositories

	2.2 Assumptions and limitations
	2.2.1 Time and version reliance

	2.3 Disclaimer
	2.4 Copyright
	​

	3 Audit Findings
	3.1 /src
	3.1.1 Comment: pause and unpause could be external
	3.1.1.1 Severity
	3.1.1.2 Files
	3.1.1.3 Functions
	3.1.1.4 Description
	3.1.1.5 Recommendation
	3.1.1.6 Customer​Implemented in 8b9a128b04dc2ceb510a8936b7534b65d67b0f81

	3.1.2 Low: pause and unpause could be virtual
	3.1.2.1 Severity
	3.1.2.2 Files
	3.1.2.3 Functions
	3.1.2.4 Description
	3.1.2.5 Recommendation
	3.1.2.6 Customer

	3.1.3 Comment: disable optimizer when compiling V1
	3.1.3.1 Severity
	3.1.3.2 Files
	3.1.3.3 Functions
	3.1.3.4 Description
	3.1.3.5 Recommendation
	3.1.3.6 Customer​Comment not implemented as it does not impact the system security.

	3.1.4 Comment: DGLDTokenV1 on-chain bytecode verification fails
	3.1.4.1 Severity
	3.1.4.2 Files
	DGLDToken.sol
	3.1.4.3 Functions
	3.1.4.4 Description
	3.1.4.5 Recommendation
	3.1.4.6 Customer

